Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Embodied Domain Adaptation for Object Detection (2506.21860v1)

Published 27 Jun 2025 in cs.RO and cs.CV

Abstract: Mobile robots rely on object detectors for perception and object localization in indoor environments. However, standard closed-set methods struggle to handle the diverse objects and dynamic conditions encountered in real homes and labs. Open-vocabulary object detection (OVOD), driven by Vision LLMs (VLMs), extends beyond fixed labels but still struggles with domain shifts in indoor environments. We introduce a Source-Free Domain Adaptation (SFDA) approach that adapts a pre-trained model without accessing source data. We refine pseudo labels via temporal clustering, employ multi-scale threshold fusion, and apply a Mean Teacher framework with contrastive learning. Our Embodied Domain Adaptation for Object Detection (EDAOD) benchmark evaluates adaptation under sequential changes in lighting, layout, and object diversity. Our experiments show significant gains in zero-shot detection performance and flexible adaptation to dynamic indoor conditions.

Summary

We haven't generated a summary for this paper yet.