Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

TIM: A Large-Scale Dataset and large Timeline Intelligence Model for Open-domain Timeline Summarization (2506.21616v1)

Published 22 Jun 2025 in cs.CL and cs.CY

Abstract: Open-domain Timeline Summarization (TLS) is crucial for monitoring the evolution of news topics. To identify changes in news topics, existing methods typically employ general LLMs to summarize relevant timestamps from retrieved news. While general LLMs demonstrate capabilities in zero-shot news summarization and timestamp localization, they struggle with assessing topic relevance and understanding topic evolution. Consequently, the summarized information often includes irrelevant details or inaccurate timestamps. To address these issues, we propose the first large Timeline Intelligence Model (TIM) for open-domain TLS, which is capable of effectively summarizing open-domain timelines. Specifically, we begin by presenting a large-scale TLS dataset, comprising over 1,000 news topics and more than 3,000 annotated TLS instances. Furthermore, we propose a progressive optimization strategy, which gradually enhance summarization performance. It employs instruction tuning to enhance summarization and topic-irrelevant information filtering capabilities. Following this, it exploits a novel dual-alignment reward learning method that incorporates both semantic and temporal perspectives, thereby improving the understanding of topic evolution principles. Through this progressive optimization strategy, TIM demonstrates a robust ability to summarize open-domain timelines. Extensive experiments in open-domain demonstrate the effectiveness of our TIM.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.