Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Debunk and Infer: Multimodal Fake News Detection via Diffusion-Generated Evidence and LLM Reasoning (2506.21557v1)

Published 11 Jun 2025 in cs.CL

Abstract: The rapid spread of fake news across multimedia platforms presents serious challenges to information credibility. In this paper, we propose a Debunk-and-Infer framework for Fake News Detection(DIFND) that leverages debunking knowledge to enhance both the performance and interpretability of fake news detection. DIFND integrates the generative strength of conditional diffusion models with the collaborative reasoning capabilities of multimodal LLMs (MLLMs). Specifically, debunk diffusion is employed to generate refuting or authenticating evidence based on the multimodal content of news videos, enriching the evaluation process with diverse yet semantically aligned synthetic samples. To improve inference, we propose a chain-of-debunk strategy where a multi-agent MLLM system produces logic-grounded, multimodal-aware reasoning content and final veracity judgment. By jointly modeling multimodal features, generative debunking cues, and reasoning-rich verification within a unified architecture, DIFND achieves notable improvements in detection accuracy. Extensive experiments on the FakeSV and FVC datasets show that DIFND not only outperforms existing approaches but also delivers trustworthy decisions.

Summary

We haven't generated a summary for this paper yet.