Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
52 tokens/sec
GPT-5 Medium
25 tokens/sec
GPT-5 High Premium
22 tokens/sec
GPT-4o
99 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
457 tokens/sec
Kimi K2 via Groq Premium
252 tokens/sec
2000 character limit reached

Optimising 4th-Order Runge-Kutta Methods: A Dynamic Heuristic Approach for Efficiency and Low Storage (2506.21465v1)

Published 26 Jun 2025 in cs.LG and cs.AI

Abstract: Extended Stability Runge-Kutta (ESRK) methods are crucial for solving large-scale computational problems in science and engineering, including weather forecasting, aerodynamic analysis, and complex biological modelling. However, balancing accuracy, stability, and computational efficiency remains challenging, particularly for high-order, low-storage schemes. This study introduces a hybrid Genetic Algorithm (GA) and Reinforcement Learning (RL) approach for automated heuristic discovery, optimising low-storage ESRK methods. Unlike traditional approaches that rely on manually designed heuristics or exhaustive numerical searches, our method leverages GA-driven mutations for search-space exploration and an RL-inspired state transition mechanism to refine heuristic selection dynamically. This enables systematic parameter reduction, preserving fourth-order accuracy while significantly improving computational efficiency.The proposed GA-RL heuristic optimisation framework is validated through rigorous testing on benchmark problems, including the 1D and 2D Brusselator systems and the steady-state Navier-Stokes equations. The best-performing heuristic achieves a 25\% reduction in IPOPT runtime compared to traditional ESRK optimisation processes while maintaining numerical stability and accuracy. These findings demonstrate the potential of adaptive heuristic discovery to improve resource efficiency in high-fidelity simulations and broaden the applicability of low-storage Runge-Kutta methods in real-world computational fluid dynamics, physics simulations, and other demanding fields. This work establishes a new paradigm in heuristic optimisation for numerical methods, opening pathways for further exploration using Deep RL and AutoML-based heuristic search

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube