Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
60 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Progtuning: Progressive Fine-tuning Framework for Transformer-based Language Models (2506.21119v1)

Published 26 Jun 2025 in cs.CL and cs.AI

Abstract: Fine-tuning is a promising technique for leveraging Transformer-based LLMs in downstream tasks. As model sizes continue to grow, updating all model parameters becomes increasingly costly. Parameter-efficient fine-tuning methods effectively address this issue by selectively updating a small subset of parameters. However, fine-tuning and most existing parameter-efficient fine-tuning methods require updating the same number of parameters as the initial size, ignoring the unequal contribution across Transformer blocks and leading to extremely inefficient allocation of computing resources. In this paper, we propose Progtuning, the novel fine-tuning framework combined with progressive learning for Transformer-based LLMs. Specifically, Progtuning progressively reduces the number of updated transformer blocks based on the contribution. Remarkably, Progtuning optimizes resource allocation and reduces the number of updated parameters by approximately 25\%, while still maintaining competitive performance. And it also exhibits high adaptability with parameter-efficient fine-tuning methods, demonstrating excellent performance across various adaptation scenarios.

Summary

We haven't generated a summary for this paper yet.