Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multimodal Representation Learning and Fusion (2506.20494v1)

Published 25 Jun 2025 in cs.LG and cs.MM

Abstract: Multi-modal learning is a fast growing area in artificial intelligence. It tries to help machines understand complex things by combining information from different sources, like images, text, and audio. By using the strengths of each modality, multi-modal learning allows AI systems to build stronger and richer internal representations. These help machines better interpretation, reasoning, and making decisions in real-life situations. This field includes core techniques such as representation learning (to get shared features from different data types), alignment methods (to match information across modalities), and fusion strategies (to combine them by deep learning models). Although there has been good progress, some major problems still remain. Like dealing with different data formats, missing or incomplete inputs, and defending against adversarial attacks. Researchers now are exploring new methods, such as unsupervised or semi-supervised learning, AutoML tools, to make models more efficient and easier to scale. And also more attention on designing better evaluation metrics or building shared benchmarks, make it easier to compare model performance across tasks and domains. As the field continues to grow, multi-modal learning is expected to improve many areas: computer vision, natural language processing, speech recognition, and healthcare. In the future, it may help to build AI systems that can understand the world in a way more like humans, flexible, context aware, and able to deal with real-world complexity.

Summary

We haven't generated a summary for this paper yet.