Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
123 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Hierarchical Mask-Enhanced Dual Reconstruction Network for Few-Shot Fine-Grained Image Classification (2506.20263v1)

Published 25 Jun 2025 in cs.CV

Abstract: Few-shot fine-grained image classification (FS-FGIC) presents a significant challenge, requiring models to distinguish visually similar subclasses with limited labeled examples. Existing methods have critical limitations: metric-based methods lose spatial information and misalign local features, while reconstruction-based methods fail to utilize hierarchical feature information and lack mechanisms to focus on discriminative regions. We propose the Hierarchical Mask-enhanced Dual Reconstruction Network (HMDRN), which integrates dual-layer feature reconstruction with mask-enhanced feature processing to improve fine-grained classification. HMDRN incorporates a dual-layer feature reconstruction and fusion module that leverages complementary visual information from different network hierarchies. Through learnable fusion weights, the model balances high-level semantic representations from the last layer with mid-level structural details from the penultimate layer. Additionally, we design a spatial binary mask-enhanced transformer self-reconstruction module that processes query features through adaptive thresholding while maintaining complete support features, enhancing focus on discriminative regions while filtering background noise. Extensive experiments on three challenging fine-grained datasets demonstrate that HMDRN consistently outperforms state-of-the-art methods across Conv-4 and ResNet-12 backbone architectures. Comprehensive ablation studies validate the effectiveness of each proposed component, revealing that dual-layer reconstruction enhances inter-class discrimination while mask-enhanced transformation reduces intra-class variations. Visualization results provide evidence of HMDRN's superior feature reconstruction capabilities.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.