Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

AALC: Large Language Model Efficient Reasoning via Adaptive Accuracy-Length Control (2506.20160v1)

Published 25 Jun 2025 in cs.CL

Abstract: Large reasoning models (LRMs) achieve impressive reasoning capabilities by generating lengthy chain-of-thoughts, but this "overthinking" incurs high latency and cost without commensurate accuracy gains. In this work, we introduce AALC, a lightweight, accuracy-aware length reward integrated into reinforcement learning that dynamically balances correctness and brevity during training. By incorporating validation accuracy into the reward and employing a smooth, dynamically scheduled length penalty, AALC delays length penalty until target performance is met. Through extensive experiments across standard and out-of-distribution math benchmarks, we show that our approach reduces response length by over 50% while maintaining or even improving the original accuracy. Furthermore, qualitative analysis reveals that our method curbs redundant reasoning patterns such as excessive subgoal setting and verification, leading to structurally refined outputs rather than naive truncation. We also identify that efficiency gains are accompanied by reduced interpretability: models trained with AALC omit some narrative framing and explanatory context. These findings highlight the potential of reward-based strategies to guide LRMs toward more efficient, generalizable reasoning paths.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.