Autonomous Cyber Resilience via a Co-Evolutionary Arms Race within a Fortified Digital Twin Sandbox (2506.20102v1)
Abstract: The convergence of IT and OT has created hyper-connected ICS, exposing critical infrastructure to a new class of adaptive, intelligent adversaries that render static defenses obsolete. Existing security paradigms often fail to address a foundational "Trinity of Trust," comprising the fidelity of the system model, the integrity of synchronizing data, and the resilience of the analytical engine against sophisticated evasion. This paper introduces the ARC framework, a method for achieving analytical resilience through an autonomous, closed-loop hardening process. ARC establishes a perpetual co-evolutionary arms race within the high-fidelity sandbox of a F-SCDT. A DRL agent, the "Red Agent," is formalized and incentivized to autonomously discover stealthy, physically-plausible attack paths that maximize process disruption while evading detection. Concurrently, an ensemble-based "Blue Agent" defender is continuously hardened via adversarial training against the evolving threats discovered by its adversary. This co-evolutionary dynamic forces both agents to become progressively more sophisticated, enabling the system to autonomously probe and patch its own vulnerabilities. Experimental validation on both the TEP and the SWaT testbeds demonstrates the framework's superior performance. A comprehensive ablation study, supported by extensive visualizations including ROC curves and SHAP plots, reveals that the co-evolutionary process itself is responsible for a significant performance increase in detecting novel attacks. By integrating XAI to ensure operator trust and proposing a scalable F-ARC architecture, this work presents ARC not merely as an improvement, but as a necessary paradigm shift toward dynamic, self-improving security for the future of critical infrastructure.