Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MAIZX: A Carbon-Aware Framework for Optimizing Cloud Computing Emissions (2506.19972v1)

Published 24 Jun 2025 in cs.DC and cs.LG

Abstract: Cloud computing drives innovation but also poses significant environmental challenges due to its high-energy consumption and carbon emissions. Data centers account for 2-4% of global energy usage, and the ICT sector's share of electricity consumption is projected to reach 40% by 2040. As the goal of achieving net-zero emissions by 2050 becomes increasingly urgent, there is a growing need for more efficient and transparent solutions, particularly for private cloud infrastructures, which are utilized by 87% of organizations, despite the dominance of public-cloud systems. This study evaluates the MAIZX framework, designed to optimize cloud operations and reduce carbon footprint by dynamically ranking resources, including data centers, edge computing nodes, and multi-cloud environments, based on real-time and forecasted carbon intensity, Power Usage Effectiveness (PUE), and energy consumption. Leveraging a flexible ranking algorithm, MAIZX achieved an 85.68% reduction in CO2 emissions compared to baseline hypervisor operations. Tested across geographically distributed data centers, the framework demonstrates scalability and effectiveness, directly interfacing with hypervisors to optimize workloads in private, hybrid, and multi-cloud environments. MAIZX integrates real-time data on carbon intensity, power consumption, and carbon footprint, as well as forecasted values, into cloud management, providing a robust tool for enhancing climate performance potential while maintaining operational efficiency.

Summary

We haven't generated a summary for this paper yet.