Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Reinforcement Learning-Based Dynamic Grouping for Tubular Structure Tracking (2506.18930v1)

Published 21 Jun 2025 in cs.CV, cs.AI, and cs.LG

Abstract: The computation of minimal paths for the applications in tracking tubular structures such as blood vessels and roads is challenged by complex morphologies and environmental variations. Existing approaches can be roughly categorized into two research lines: the point-wise based models and the segment-wise based models. Although segment-wise approaches have obtained promising results in many scenarios, they often suffer from computational inefficiency and heavily rely on a prescribed prior to fit the target elongated shapes. We propose a novel framework that casts segment-wise tracking as a Markov Decision Process (MDP), enabling a reinforcement learning approach. Our method leverages Q-Learning to dynamically explore a graph of segments, computing edge weights on-demand and adaptively expanding the search space. This strategy avoids the high cost of a pre-computed graph and proves robust to incomplete initial information. Experimental reuslts on typical tubular structure datasets demonstrate that our method significantly outperforms state-of-the-art point-wise and segment-wise approaches. The proposed method effectively handles complex topologies and maintains global path coherence without depending on extensive prior structural knowledge.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.