Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Within-Orbit Adaptive Leapfrog No-U-Turn Sampler (2506.18746v1)

Published 23 Jun 2025 in stat.CO, math.PR, and stat.ML

Abstract: Locally adapting parameters within Markov chain Monte Carlo methods while preserving reversibility is notoriously difficult. The success of the No-U-Turn Sampler (NUTS) largely stems from its clever local adaptation of the integration time in Hamiltonian Monte Carlo via a geometric U-turn condition. However, posterior distributions frequently exhibit multi-scale geometries with extreme variations in scale, making it necessary to also adapt the leapfrog integrator's step size locally and dynamically. Despite its practical importance, this problem has remained largely open since the introduction of NUTS by Hoffman and Gelman (2014). To address this issue, we introduce the Within-orbit Adaptive Leapfrog No-U-Turn Sampler (WALNUTS), a generalization of NUTS that adapts the leapfrog step size at fixed intervals of simulated time as the orbit evolves. At each interval, the algorithm selects the largest step size from a dyadic schedule that keeps the energy error below a user-specified threshold. Like NUTS, WALNUTS employs biased progressive state selection to favor states with positions that are further from the initial point along the orbit. Empirical evaluations on multiscale target distributions, including Neal's funnel and the Stock-Watson stochastic volatility time-series model, demonstrate that WALNUTS achieves substantial improvements in sampling efficiency and robustness compared to standard NUTS.

Summary

We haven't generated a summary for this paper yet.