Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
123 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Call Me Maybe: Enhancing JavaScript Call Graph Construction using Graph Neural Networks (2506.18191v1)

Published 22 Jun 2025 in cs.SE, cs.AI, and cs.LG

Abstract: Static analysis plays a key role in finding bugs, including security issues. A critical step in static analysis is building accurate call graphs that model function calls in a program. However, due to hard-to-analyze language features, existing call graph construction algorithms for JavaScript are neither sound nor complete. Prior work shows that even advanced solutions produce false edges and miss valid ones. In this work, we assist these tools by identifying missed call edges. Our main idea is to frame the problem as link prediction on full program graphs, using a rich representation with multiple edge types. Our approach, GRAPHIA, leverages recent advances in graph neural networks to model non-local relationships between code elements. Concretely, we propose representing JavaScript programs using a combination of syntactic- and semantic-based edges. GRAPHIA can learn from imperfect labels, including static call edges from existing tools and dynamic edges from tests, either from the same or different projects. Because call graphs are sparse, standard machine learning metrics like ROC are not suitable. Instead, we evaluate GRAPHIA by ranking function definitions for each unresolved call site. We conduct a large-scale evaluation on 50 popular JavaScript libraries with 163K call edges (150K static and 13K dynamic). GRAPHIA builds program graphs with 6.6M structural and 386K semantic edges. It ranks the correct target as the top candidate in over 42% of unresolved cases and within the top 5 in 72% of cases, reducing the manual effort needed for analysis. Our results show that learning-based methods can improve the recall of JavaScript call graph construction. To our knowledge, this is the first work to apply GNN-based link prediction to full multi-file program graphs for interprocedural analysis.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com