Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Bayesian Multiobject Tracking With Neural-Enhanced Motion and Measurement Models (2506.18124v1)

Published 22 Jun 2025 in cs.LG, eess.SP, and stat.ML

Abstract: Multiobject tracking (MOT) is an important task in applications including autonomous driving, ocean sciences, and aerospace surveillance. Traditional MOT methods are model-based and combine sequential Bayesian estimation with data association and an object birth model. More recent methods are fully data-driven and rely on the training of neural networks. Both approaches offer distinct advantages in specific settings. In particular, model-based methods are generally applicable across a wide range of scenarios, whereas data-driven MOT achieves superior performance in scenarios where abundant labeled data for training is available. A natural thought is whether a general framework can integrate the two approaches. This paper introduces a hybrid method that utilizes neural networks to enhance specific aspects of the statistical model in Bayesian MOT that have been identified as overly simplistic. By doing so, the performance of the prediction and update steps of Bayesian MOT is improved. To ensure tractable computation, our framework uses belief propagation to avoid high-dimensional operations combined with sequential Monte Carlo methods to perform low-dimensional operations efficiently. The resulting method combines the flexibility and robustness of model-based approaches with the capability to learn complex information from data of neural networks. We evaluate the performance of the proposed method based on the nuScenes autonomous driving dataset and demonstrate that it has state-of-the-art performance

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.