Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GD-Retriever: Controllable Generative Text-Music Retrieval with Diffusion Models (2506.17886v2)

Published 22 Jun 2025 in cs.SD and eess.AS

Abstract: Multimodal contrastive models have achieved strong performance in text-audio retrieval and zero-shot settings, but improving joint embedding spaces remains an active research area. Less attention has been given to making these systems controllable and interactive for users. In text-music retrieval, the ambiguity of freeform language creates a many-to-many mapping, often resulting in inflexible or unsatisfying results. We introduce Generative Diffusion Retriever (GDR), a novel framework that leverages diffusion models to generate queries in a retrieval-optimized latent space. This enables controllability through generative tools such as negative prompting and denoising diffusion implicit models (DDIM) inversion, opening a new direction in retrieval control. GDR improves retrieval performance over contrastive teacher models and supports retrieval in audio-only latent spaces using non-jointly trained encoders. Finally, we demonstrate that GDR enables effective post-hoc manipulation of retrieval behavior, enhancing interactive control for text-music retrieval tasks.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com