Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Malware Detection with Optimized Learning on High-Dimensional Features (2506.17309v1)

Published 18 Jun 2025 in cs.CR and cs.LG

Abstract: Malware detection using machine learning requires feature extraction from binary files, as models cannot process raw binaries directly. A common approach involves using LIEF for raw feature extraction and the EMBER vectorizer to generate 2381-dimensional feature vectors. However, the high dimensionality of these features introduces significant computational challenges. This study addresses these challenges by applying two dimensionality reduction techniques: XGBoost-based feature selection and Principal Component Analysis (PCA). We evaluate three reduced feature dimensions (128, 256, and 384), which correspond to approximately 5.4%, 10.8%, and 16.1% of the original 2381 features, across four models-XGBoost, LightGBM, Extra Trees, and Random Forest-using a unified training, validation, and testing split formed from the EMBER-2018, ERMDS, and BODMAS datasets. This approach ensures generalization and avoids dataset bias. Experimental results show that LightGBM trained on the 384-dimensional feature set after XGBoost feature selection achieves the highest accuracy of 97.52% on the unified dataset, providing an optimal balance between computational efficiency and detection performance. The best model, trained in 61 minutes using 30 GB of RAM and 19.5 GB of disk space, generalizes effectively to completely unseen datasets, maintaining 95.31% accuracy on TRITIUM and 93.98% accuracy on INFERNO. These findings present a scalable, compute-efficient approach for malware detection without compromising accuracy.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Aditya Choudhary (4 papers)
  2. Sarthak Pawar (1 paper)
  3. Yashodhara Haribhakta (5 papers)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com