Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dissecting the SWE-Bench Leaderboards: Profiling Submitters and Architectures of LLM- and Agent-Based Repair Systems (2506.17208v1)

Published 20 Jun 2025 in cs.SE, cs.AI, and cs.CL

Abstract: The rapid progress in Automated Program Repair (APR) has been driven by advances in AI, particularly LLMs and agent-based systems. SWE-Bench is a recent benchmark designed to evaluate LLM-based repair systems using real issues and pull requests mined from 12 popular open-source Python repositories. Its public leaderboards, SWE-Bench Lite and SWE-Bench Verified, have become central platforms for tracking progress and comparing solutions. However, because the submission process does not require detailed documentation, the architectural design and origin of many solutions remain unclear. In this paper, we present the first comprehensive study of all submissions to the SWE-Bench Lite (68 entries) and Verified (79 entries) leaderboards, analyzing 67 unique approaches across dimensions such as submitter type, product availability, LLM usage, and system architecture. Our findings reveal the dominance of proprietary LLMs (especially Claude 3.5/3.7), the presence of both agentic and non-agentic designs, and a contributor base spanning from individual developers to large tech companies.

Summary

We haven't generated a summary for this paper yet.