Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
35 tokens/sec
2000 character limit reached

From Data to Knowledge: Evaluating How Efficiently Language Models Learn Facts (2506.16912v1)

Published 20 Jun 2025 in cs.CL and cs.LG

Abstract: Sample efficiency is a crucial property of LLMs with practical implications for training efficiency. In real-world text, information follows a long-tailed distribution. Yet, we expect models to learn and recall frequent and infrequent facts. Sample-efficient models are better equipped to handle this challenge of learning and retaining rare information without requiring excessive exposure. This study analyzes multiple models of varying architectures and sizes, all trained on the same pre-training data. By annotating relational facts with their frequencies in the training corpus, we examine how model performance varies with fact frequency. Our findings show that most models perform similarly on high-frequency facts but differ notably on low-frequency facts. This analysis provides new insights into the relationship between model architecture, size, and factual learning efficiency.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.