2000 character limit reached
Transcendental Brauer groups of cubic generalised Kummer surfaces (2506.16372v1)
Published 19 Jun 2025 in math.NT and math.AG
Abstract: Given a cubic curve $C$ over a number field, we consider the K3 surface $Y_C$ constructed as the minimal desingularisation of the quotient of $C \times C$ by an automorphism of order 3. We relate the transcendental Brauer groups of $Y_C$ and $C \times C$, allowing us to explicitly compute the former group in the case of a diagonal cubic curve defined over $\mathbb{Q}$. We obtain conjectural insight on the existence of Galois cubic points over $\mathbb{Q}$ for everywhere locally soluble diagonal cubic curves.