Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
104 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EDNet: A Distortion-Agnostic Speech Enhancement Framework with Gating Mamba Mechanism and Phase Shift-Invariant Training (2506.16231v1)

Published 19 Jun 2025 in eess.AS and cs.SD

Abstract: Speech signals in real-world environments are frequently affected by various distortions such as additive noise, reverberation, and bandwidth limitation, which may appear individually or in combination. Traditional speech enhancement methods typically rely on either masking, which focuses on suppressing non-speech components while preserving observable structure, or mapping, which seeks to recover clean speech through direct transformation of the input. Each approach offers strengths in specific scenarios but may be less effective outside its target conditions. We propose the Erase and Draw Network (EDNet), a distortion-agnostic speech enhancement framework designed to handle a broad range of distortion types without prior assumptions about task or input characteristics. EDNet consists of two main components: (1) the Gating Mamba (GM) module, which adaptively combines masking and mapping through a learnable gating mechanism that selects between suppression (Erase) and reconstruction (Draw) based on local signal features, and (2) Phase Shift-Invariant Training (PSIT), a shift tolerant supervision strategy that improves phase estimation by enabling dynamic alignment during training while remaining compatible with standard loss functions. Experimental results on denoising, dereverberation, bandwidth extension, and multi distortion enhancement tasks show that EDNet consistently achieves strong performance across conditions, demonstrating its architectural flexibility and adaptability to diverse task settings.

Summary

We haven't generated a summary for this paper yet.