Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
Gemini 2.5 Pro Premium
51 tokens/sec
GPT-5 Medium
32 tokens/sec
GPT-5 High Premium
24 tokens/sec
GPT-4o
86 tokens/sec
DeepSeek R1 via Azure Premium
95 tokens/sec
GPT OSS 120B via Groq Premium
460 tokens/sec
Kimi K2 via Groq Premium
208 tokens/sec
2000 character limit reached

DynScaling: Efficient Verifier-free Inference Scaling via Dynamic and Integrated Sampling (2506.16043v1)

Published 19 Jun 2025 in cs.CL, cs.AI, and cs.LG

Abstract: Inference-time scaling has proven effective in boosting LLM performance through increased test-time computation. Yet, its practical application is often hindered by reliance on external verifiers or a lack of optimization for realistic computational constraints. We propose DynScaling, which addresses these limitations through two primary innovations: an integrated parallel-sequential sampling strategy and a bandit-based dynamic budget allocation framework. The integrated sampling strategy unifies parallel and sequential sampling by constructing synthetic sequential reasoning chains from initially independent parallel responses, promoting diverse and coherent reasoning trajectories. The dynamic budget allocation framework formulates the allocation of computational resources as a multi-armed bandit problem, adaptively distributing the inference budget across queries based on the uncertainty of previously sampled responses, thereby maximizing computational efficiency. By combining these components, DynScaling effectively improves LLM performance under practical resource constraints without the need for external verifiers. Experimental results demonstrate that DynScaling consistently surpasses existing verifier-free inference scaling baselines in both task performance and computational cost.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube