Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
99 tokens/sec
Gemini 2.5 Pro Premium
56 tokens/sec
GPT-5 Medium
26 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
106 tokens/sec
DeepSeek R1 via Azure Premium
99 tokens/sec
GPT OSS 120B via Groq Premium
507 tokens/sec
Kimi K2 via Groq Premium
213 tokens/sec
2000 character limit reached

Enhancing Document-Level Question Answering via Multi-Hop Retrieval-Augmented Generation with LLaMA 3 (2506.16037v1)

Published 19 Jun 2025 in cs.CL and cs.LG

Abstract: This paper presents a novel Retrieval-Augmented Generation (RAG) framework tailored for complex question answering tasks, addressing challenges in multi-hop reasoning and contextual understanding across lengthy documents. Built upon LLaMA 3, the framework integrates a dense retrieval module with advanced context fusion and multi-hop reasoning mechanisms, enabling more accurate and coherent response generation. A joint optimization strategy combining retrieval likelihood and generation cross-entropy improves the model's robustness and adaptability. Experimental results show that the proposed system outperforms existing retrieval-augmented and generative baselines, confirming its effectiveness in delivering precise, contextually grounded answers.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com