Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Language Models can perform Single-Utterance Self-Correction of Perturbed Reasoning (2506.15894v1)

Published 18 Jun 2025 in cs.CL and cs.AI

Abstract: LLMs have demonstrated impressive mathematical reasoning capabilities, yet their performance remains brittle to minor variations in problem description and prompting strategy. Furthermore, reasoning is vulnerable to sampling-induced errors which autoregressive models must primarily address using self-correction via additionally-generated tokens. To better understand self-correction capabilities of recent models, we conduct experiments measuring models' ability to self-correct synthetic perturbations introduced into their Chain of Thought (CoT) reasoning. We observe robust single-utterance intrinsic self-correction behavior across a range of open-weight models and datasets, ranging from subtle, implicit corrections to explicit acknowledgments and corrections of errors. Our findings suggest that LLMs, including those not finetuned for long CoT, may possess stronger intrinsic self-correction capabilities than commonly shown in the literature. The presence of this ability suggests that recent "reasoning" model work involves amplification of traits already meaningfully present in models.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.