Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Identifying economic narratives in large text corpora -- An integrated approach using Large Language Models (2506.15041v1)

Published 18 Jun 2025 in econ.GN, cs.CL, and q-fin.EC

Abstract: As interest in economic narratives has grown in recent years, so has the number of pipelines dedicated to extracting such narratives from texts. Pipelines often employ a mix of state-of-the-art natural language processing techniques, such as BERT, to tackle this task. While effective on foundational linguistic operations essential for narrative extraction, such models lack the deeper semantic understanding required to distinguish extracting economic narratives from merely conducting classic tasks like Semantic Role Labeling. Instead of relying on complex model pipelines, we evaluate the benefits of LLMs by analyzing a corpus of Wall Street Journal and New York Times newspaper articles about inflation. We apply a rigorous narrative definition and compare GPT-4o outputs to gold-standard narratives produced by expert annotators. Our results suggests that GPT-4o is capable of extracting valid economic narratives in a structured format, but still falls short of expert-level performance when handling complex documents and narratives. Given the novelty of LLMs in economic research, we also provide guidance for future work in economics and the social sciences that employs LLMs to pursue similar objectives.

Summary

We haven't generated a summary for this paper yet.