Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Enhancing Symbolic Machine Learning by Subsymbolic Representations (2506.14569v1)

Published 17 Jun 2025 in cs.AI and cs.LO

Abstract: The goal of neuro-symbolic AI is to integrate symbolic and subsymbolic AI approaches, to overcome the limitations of either. Prominent systems include Logic Tensor Networks (LTN) or DeepProbLog, which offer neural predicates and end-to-end learning. The versatility of systems like LTNs and DeepProbLog, however, makes them less efficient in simpler settings, for instance, for discriminative machine learning, in particular in domains with many constants. Therefore, we follow a different approach: We propose to enhance symbolic machine learning schemes by giving them access to neural embeddings. In the present paper, we show this for TILDE and embeddings of constants used by TILDE in similarity predicates. The approach can be fine-tuned by further refining the embeddings depending on the symbolic theory. In experiments in three real-world domain, we show that this simple, yet effective, approach outperforms all other baseline methods in terms of the F1 score. The approach could be useful beyond this setting: Enhancing symbolic learners in this way could be extended to similarities between instances (effectively working like kernels within a logical language), for analogical reasoning, or for propositionalization.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com