Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 105 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 214 tok/s Pro
2000 character limit reached

Active Digital Twins via Active Inference (2506.14453v1)

Published 17 Jun 2025 in cs.CE

Abstract: Digital twins are transforming engineering and applied sciences by enabling real-time monitoring, simulation, and predictive analysis of physical systems and processes. However, conventional digital twins rely primarily on passive data assimilation, which limits their adaptability in uncertain and dynamic environments. This paper introduces the active digital twin paradigm, based on active inference. Active inference is a neuroscience-inspired, Bayesian framework for probabilistic reasoning and predictive modeling that unifies inference, decision-making, and learning under a unique, free energy minimization objective. By formulating the evolution of the active digital twin as a partially observable Markov decision process, the active inference agent continuously refines its generative model through Bayesian updates and forecasts future states and observations. Decision-making emerges from an optimization process that balances pragmatic exploitation (maximizing goal-directed utility) and epistemic exploration or information gain (actively resolving uncertainty). Actions are dynamically planned to minimize expected free energy, which quantifies both the divergence between predicted and preferred future observations, and the epistemic value of expected information gain about hidden states. This approach enables a new level of autonomy and resilience in digital twins, offering superior spontaneous exploration capabilities. The proposed framework is assessed on the health monitoring and predictive maintenance of a railway bridge.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.