Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal Rates of ERM for Agnostic Learning (2506.14110v1)

Published 17 Jun 2025 in stat.ML and cs.LG

Abstract: The universal learning framework has been developed to obtain guarantees on the learning rates that hold for any fixed distribution, which can be much faster than the ones uniformly hold over all the distributions. Given that the Empirical Risk Minimization (ERM) principle being fundamental in the PAC theory and ubiquitous in practical machine learning, the recent work of arXiv:2412.02810 studied the universal rates of ERM for binary classification under the realizable setting. However, the assumption of realizability is too restrictive to hold in practice. Indeed, the majority of the literature on universal learning has focused on the realizable case, leaving the non-realizable case barely explored. In this paper, we consider the problem of universal learning by ERM for binary classification under the agnostic setting, where the ''learning curve" reflects the decay of the excess risk as the sample size increases. We explore the possibilities of agnostic universal rates and reveal a compact trichotomy: there are three possible agnostic universal rates of ERM, being either $e{-n}$, $o(n{-1/2})$, or arbitrarily slow. We provide a complete characterization of which concept classes fall into each of these categories. Moreover, we also establish complete characterizations for the target-dependent universal rates as well as the Bayes-dependent universal rates.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets