Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LLM Embedding-based Attribution (LEA): Quantifying Source Contributions to Generative Model's Response for Vulnerability Analysis (2506.12100v1)

Published 12 Jun 2025 in cs.CR and cs.AI

Abstract: Security vulnerabilities are rapidly increasing in frequency and complexity, creating a shifting threat landscape that challenges cybersecurity defenses. LLMs have been widely adopted for cybersecurity threat analysis. When querying LLMs, dealing with new, unseen vulnerabilities is particularly challenging as it lies outside LLMs' pre-trained distribution. Retrieval-Augmented Generation (RAG) pipelines mitigate the problem by injecting up-to-date authoritative sources into the model context, thus reducing hallucinations and increasing the accuracy in responses. Meanwhile, the deployment of LLMs in security-sensitive environments introduces challenges around trust and safety. This raises a critical open question: How to quantify or attribute the generated response to the retrieved context versus the model's pre-trained knowledge? This work proposes LLM Embedding-based Attribution (LEA) -- a novel, explainable metric to paint a clear picture on the 'percentage of influence' the pre-trained knowledge vs. retrieved content has for each generated response. We apply LEA to assess responses to 100 critical CVEs from the past decade, verifying its effectiveness to quantify the insightfulness for vulnerability analysis. Our development of LEA reveals a progression of independency in hidden states of LLMs: heavy reliance on context in early layers, which enables the derivation of LEA; increased independency in later layers, which sheds light on why scale is essential for LLM's effectiveness. This work provides security analysts a means to audit LLM-assisted workflows, laying the groundwork for transparent, high-assurance deployments of RAG-enhanced LLMs in cybersecurity operations.

Summary

We haven't generated a summary for this paper yet.