Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

PE-MA: Parameter-Efficient Co-Evolution of Multi-Agent Systems (2506.11803v1)

Published 13 Jun 2025 in cs.MA

Abstract: Multi-Agent Systems have recently emerged as a promising paradigm for collaborative reasoning and solving complex tasks. However, the design of collaborative learning algorithms in multi-agent systems faces several challenges, including high communication overhead and insufficient agent-level personalization. In this paper, we propose PE-MA (Parameter-Efficient Multi-Agent Co-Evolution), a novel collaboration framework that supports efficient, scalable, and personalized co-evolution in multi-agent systems. In PE-MA, each agent maintains a lightweight personalized adapter to support agent-specific behavior, while a shared adapter is collaboratively optimized across neighboring agents. This design balances global coordination with local adaptation under heterogeneous environments. We achieve an asymptotically optimal convergence rate of O( 1/(NK)1/2 ), where N is the number of agents and K the local update steps.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets