Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
Gemini 2.5 Pro Premium
52 tokens/sec
GPT-5 Medium
24 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
85 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
478 tokens/sec
Kimi K2 via Groq Premium
221 tokens/sec
2000 character limit reached

Vectorized Sparse Second-Order Forward Automatic Differentiation for Optimal Control Direct Methods (2506.11537v1)

Published 13 Jun 2025 in eess.SY, cs.SY, and math.OC

Abstract: Direct collocation methods are widely used numerical techniques for solving optimal control problems. The discretization of continuous-time optimal control problems transforms them into large-scale nonlinear programming problems, which require efficient computation of first- and second-order derivatives. To achieve computational efficiency, these derivatives must be computed in sparse and vectorized form, exploiting the problem's inherent sparsity structure. This paper presents a vectorized sparse second-order forward automatic differentiation framework designed for direct collocation methods in optimal control. The method exploits the problem's sparse structure to efficiently compute derivatives across multiple mesh points. By incorporating both scalar and vector nodes within the expression graph, the approach enables effective parallelization and optimized memory access patterns while maintaining flexibility for complex problems. The methodology is demonstrated through application to a prototype optimal control problem. A complete implementation for multi-phase optimal control problems is available as an open-source package, supporting both theoretical research and practical applications.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)