Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Local empirical Bayes correction for Bayesian modeling (2506.11424v2)

Published 13 Jun 2025 in stat.ME, math.ST, and stat.TH

Abstract: The James-Stein estimator has attracted much interest as a shrinkage estimator that yields better estimates than the maximum likelihood estimator. The James-Stein estimator is also very useful as an argument in favor of empirical Bayesian methods. However, for problems involving large-scale data, such as differential gene expression data, the distribution is considered a mixture distribution with different means that cannot be considered sufficiently close. Therefore, it is not appropriate to apply the James-Stein estimator. Efron (2011) proposed a local empirical Bayes correction that attempted to correct a selection bias for large-scale data.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com