Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 105 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 214 tok/s Pro
2000 character limit reached

Reflexive dg categories in algebra and topology (2506.11213v1)

Published 12 Jun 2025 in math.RT, math.AG, math.AT, math.CT, and math.SG

Abstract: Reflexive dg categories were introduced by Kuznetsov and Shinder to abstract the duality between bounded and perfect derived categories. In particular this duality relates their Hochschild cohomologies, autoequivalence groups, and semiorthogonal decompositions. We establish reflexivity in a variety of settings including affine schemes, simple-minded collections, chain and cochain dg algebras of topological spaces, Ginzburg dg algebras, and Fukaya categories of cotangent bundles and surfaces as well as the closely related class of graded gentle algebras. Our proofs are based on the interplay of reflexivity with gluings, derived completions, and Koszul duality. In particular we show that for certain (co)connective dg algebras, reflexivity is equivalent to derived completeness.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.