Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
10 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EfficientQuant: An Efficient Post-Training Quantization for CNN-Transformer Hybrid Models on Edge Devices (2506.11093v1)

Published 5 Jun 2025 in cs.CV

Abstract: Hybrid models that combine convolutional and transformer blocks offer strong performance in computer vision (CV) tasks but are resource-intensive for edge deployment. Although post-training quantization (PTQ) can help reduce resource demand, its application to hybrid models remains limited. We propose EfficientQuant, a novel structure-aware PTQ approach that applies uniform quantization to convolutional blocks and $log_2$ quantization to transformer blocks. EfficientQuant achieves $2.5 \times - 8.7 \times$ latency reduction with minimal accuracy loss on the ImageNet-1K dataset. It further demonstrates low latency and memory efficiency on edge devices, making it practical for real-world deployment.

Summary

We haven't generated a summary for this paper yet.