Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
32 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
468 tokens/sec
Kimi K2 via Groq Premium
202 tokens/sec
2000 character limit reached

Better Pseudo-labeling with Multi-ASR Fusion and Error Correction by SpeechLLM (2506.11089v1)

Published 5 Jun 2025 in eess.AS, cs.AI, and cs.CL

Abstract: Automatic speech recognition (ASR) models rely on high-quality transcribed data for effective training. Generating pseudo-labels for large unlabeled audio datasets often relies on complex pipelines that combine multiple ASR outputs through multi-stage processing, leading to error propagation, information loss and disjoint optimization. We propose a unified multi-ASR prompt-driven framework using postprocessing by either textual or speech-based LLMs, replacing voting or other arbitration logic for reconciling the ensemble outputs. We perform a comparative study of multiple architectures with and without LLMs, showing significant improvements in transcription accuracy compared to traditional methods. Furthermore, we use the pseudo-labels generated by the various approaches to train semi-supervised ASR models for different datasets, again showing improved performance with textual and speechLLM transcriptions compared to baselines.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube