Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Prompts to Summaries: Zero-Shot Language-Guided Video Summarization (2506.10807v1)

Published 12 Jun 2025 in cs.CV

Abstract: The explosive growth of video data intensified the need for flexible user-controllable summarization tools that can operate without domain-specific training data. Existing methods either rely on datasets, limiting generalization, or cannot incorporate user intent expressed in natural language. We introduce Prompts-to-Summaries: the first zero-shot, text-queryable video summarizer that converts off-the-shelf video-LLMs (VidLMs) captions into user-guided skims via LLMs judging, without the use of training data at all, beating all unsupervised and matching supervised methods. Our pipeline (i) segments raw video footage into coherent scenes, (ii) generates rich scene-level descriptions through a memory-efficient, batch-style VidLM prompting scheme that scales to hours-long videos on a single GPU, (iii) leverages an LLM as a judge to assign scene-level importance scores under a carefully crafted prompt, and finally, (iv) propagates those scores to short segments level via two new metrics: consistency (temporal coherency) and uniqueness (novelty), yielding fine-grained frame importance. On SumMe and TVSum, our data-free approach surpasses all prior data-hungry unsupervised methods. It also performs competitively on the Query-Focused Video Summarization (QFVS) benchmark, despite using no training data and the competing methods requiring supervised frame-level importance. To spur further research, we release VidSum-Reason, a new query-driven dataset featuring long-tailed concepts and multi-step reasoning; our framework attains robust F1 scores and serves as the first challenging baseline. Overall, our results demonstrate that pretrained multimodal models, when orchestrated with principled prompting and score propagation, already provide a powerful foundation for universal, text-queryable video summarization.

Summary

We haven't generated a summary for this paper yet.