Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
35 tokens/sec
2000 character limit reached

Data Shifts Hurt CoT: A Theoretical Study (2506.10647v2)

Published 12 Jun 2025 in cs.LG and cs.AI

Abstract: Chain of Thought (CoT) has been applied to various LLMs and proven to be effective in improving the quality of outputs. In recent studies, transformers are proven to have absolute upper bounds in terms of expressive power, and consequently, they cannot solve many computationally difficult problems. However, empowered by CoT, transformers are proven to be able to solve some difficult problems effectively, such as the $k$-parity problem. Nevertheless, those works rely on two imperative assumptions: (1) identical training and testing distribution, and (2) corruption-free training data with correct reasoning steps. However, in the real world, these assumptions do not always hold. Although the risks of data shifts have caught attention, our work is the first to rigorously study the exact harm caused by such shifts to the best of our knowledge. Focusing on the $k$-parity problem, in this work we investigate the joint impact of two types of data shifts: the distribution shifts and data poisoning, on the quality of trained models obtained by a well-established CoT decomposition. In addition to revealing a surprising phenomenon that CoT leads to worse performance on learning parity than directly generating the prediction, our technical results also give a rigorous and comprehensive explanation of the mechanistic reasons of such impact.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.