Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modelling intermediate internal waves with currents and variable bottom (2506.10123v1)

Published 11 Jun 2025 in nlin.PS and physics.flu-dyn

Abstract: A model for internal interfacial waves between two layers of fluid in the presence of current and variable bottom is studied in the flat-surface approximation. Fluids are assumed to be incompressible and inviscid. Another assumption is that the upper layer is considerably deeper with a lower density than the lower layer. The fluid dynamics is presented in Hamiltonian form with appropriate Dirichlet-Neumann operators for the two fluid domains, and the depth-dependent current is taken into account. The well known integrable Intermediate Long Wave Equation (ILWE) is derived as an asymptotic internal waves model in the case of flat bottom. For a non-flat bottom the ILWE is with variable coefficients. Two limits of the ILWE lead to the integrable Benjamin-Ono and Korteweg-de Vries equations. Higher-order ILWE is obtained as well.

Summary

We haven't generated a summary for this paper yet.