Step-by-step Instructions and a Simple Tabular Output Format Improve the Dependency Parsing Accuracy of LLMs (2506.09983v2)
Abstract: Recent advances in LLMs have enabled impressive performance in various tasks. However, standard prompting often struggles to produce structurally valid and accurate outputs, especially in dependency parsing. We propose a novel step-by-step instruction strategy, where universal part-of-speech tagging precedes the prediction of syntactic heads and dependency labels, and a simplified CoNLL-U like output format, our method achieves state-of-the-art accuracy on Universal Dependencies datasets across 17 languages without hallucination or contamination. We further show that multilingual fine-tuning simultaneously improves cross-language generalization performance. Our results highlight the effectiveness of explicit reasoning steps in LLM-based parsing and offer a scalable, format-consistent alternative to bracket-based approaches.