CounselBench: A Large-Scale Expert Evaluation and Adversarial Benchmark of Large Language Models in Mental Health Counseling (2506.08584v1)
Abstract: LLMs are increasingly proposed for use in mental health support, yet their behavior in realistic counseling scenarios remains largely untested. We introduce CounselBench, a large-scale benchmark developed with 100 mental health professionals to evaluate and stress-test LLMs in single-turn counseling. The first component, CounselBench-EVAL, contains 2,000 expert evaluations of responses from GPT-4, LLaMA 3, Gemini, and online human therapists to real patient questions. Each response is rated along six clinically grounded dimensions, with written rationales and span-level annotations. We find that LLMs often outperform online human therapists in perceived quality, but experts frequently flag their outputs for safety concerns such as unauthorized medical advice. Follow-up experiments show that LLM judges consistently overrate model responses and overlook safety issues identified by human experts. To probe failure modes more directly, we construct CounselBench-Adv, an adversarial dataset of 120 expert-authored counseling questions designed to trigger specific model issues. Evaluation across 2,880 responses from eight LLMs reveals consistent, model-specific failure patterns. Together, CounselBench establishes a clinically grounded framework for benchmarking and improving LLM behavior in high-stakes mental health settings.
- Yahan Li (5 papers)
- Jifan Yao (1 paper)
- John Bosco S. Bunyi (1 paper)
- Adam C. Frank (1 paper)
- Angel Hwang (1 paper)
- Ruishan Liu (6 papers)