Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CounselBench: A Large-Scale Expert Evaluation and Adversarial Benchmark of Large Language Models in Mental Health Counseling (2506.08584v1)

Published 10 Jun 2025 in cs.CL

Abstract: LLMs are increasingly proposed for use in mental health support, yet their behavior in realistic counseling scenarios remains largely untested. We introduce CounselBench, a large-scale benchmark developed with 100 mental health professionals to evaluate and stress-test LLMs in single-turn counseling. The first component, CounselBench-EVAL, contains 2,000 expert evaluations of responses from GPT-4, LLaMA 3, Gemini, and online human therapists to real patient questions. Each response is rated along six clinically grounded dimensions, with written rationales and span-level annotations. We find that LLMs often outperform online human therapists in perceived quality, but experts frequently flag their outputs for safety concerns such as unauthorized medical advice. Follow-up experiments show that LLM judges consistently overrate model responses and overlook safety issues identified by human experts. To probe failure modes more directly, we construct CounselBench-Adv, an adversarial dataset of 120 expert-authored counseling questions designed to trigger specific model issues. Evaluation across 2,880 responses from eight LLMs reveals consistent, model-specific failure patterns. Together, CounselBench establishes a clinically grounded framework for benchmarking and improving LLM behavior in high-stakes mental health settings.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Yahan Li (5 papers)
  2. Jifan Yao (1 paper)
  3. John Bosco S. Bunyi (1 paper)
  4. Adam C. Frank (1 paper)
  5. Angel Hwang (1 paper)
  6. Ruishan Liu (6 papers)