Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Simple Analysis of Discretization Error in Diffusion Models (2506.08337v1)

Published 10 Jun 2025 in cs.LG and stat.ML

Abstract: Diffusion models, formulated as discretizations of stochastic differential equations (SDEs), achieve state-of-the-art generative performance. However, existing analyses of their discretization error often rely on complex probabilistic tools. In this work, we present a simplified theoretical framework for analyzing the Euler--Maruyama discretization of variance-preserving SDEs (VP-SDEs) in Denoising Diffusion Probabilistic Models (DDPMs), where $ T $ denotes the number of denoising steps in the diffusion process. Our approach leverages Gr\"onwall's inequality to derive a convergence rate of $ \mathcal{O}(1/T{1/2}) $ under Lipschitz assumptions, significantly streamlining prior proofs. Furthermore, we demonstrate that the Gaussian noise in the discretization can be replaced by a discrete random variable (e.g., Rademacher or uniform noise) without sacrificing convergence guarantees-an insight with practical implications for efficient sampling. Experiments validate our theory, showing that (1) the error scales as predicted, (2) discrete noise achieves comparable sample quality to Gaussian noise, and (3) incorrect noise scaling degrades performance. By unifying simplified analysis and discrete noise substitution, our work bridges theoretical rigor with practical efficiency in diffusion-based generative modeling.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets