Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

dLLM-Cache: Accelerating Diffusion Large Language Models with Adaptive Caching (2506.06295v1)

Published 17 May 2025 in cs.LG, cs.AI, and cs.CL

Abstract: Autoregressive Models (ARMs) have long dominated the landscape of LLMs. Recently, a new paradigm has emerged in the form of diffusion-based LLMs (dLLMs), which generate text by iteratively denoising masked segments. This approach has shown significant advantages and potential. However, dLLMs suffer from high inference latency. Traditional ARM acceleration techniques, such as Key-Value caching, are incompatible with dLLMs due to their bidirectional attention mechanism. To address this specific challenge, our work begins with a key observation that dLLM inference involves a static prompt and a partially dynamic response, where most tokens remain stable across adjacent denoising steps. Based on this, we propose dLLM-Cache, a training-free adaptive caching framework that combines long-interval prompt caching with partial response updates guided by feature similarity. This design enables efficient reuse of intermediate computations without compromising model performance. Extensive experiments on representative dLLMs, including LLaDA 8B and Dream 7B, show that dLLM-Cache achieves up to 9.1 x speedup over standard inference without compromising output quality. Notably, our method brings dLLM inference latency close to that of ARMs under many settings. Codes are provided in the supplementary material and will be released publicly on GitHub.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com