Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
96 tokens/sec
Gemini 2.5 Pro Premium
48 tokens/sec
GPT-5 Medium
15 tokens/sec
GPT-5 High Premium
23 tokens/sec
GPT-4o
104 tokens/sec
DeepSeek R1 via Azure Premium
77 tokens/sec
GPT OSS 120B via Groq Premium
466 tokens/sec
Kimi K2 via Groq Premium
201 tokens/sec
2000 character limit reached

Additive decomposition of one-dimensional signals using Transformers (2506.05942v1)

Published 6 Jun 2025 in cs.LG

Abstract: One-dimensional signal decomposition is a well-established and widely used technique across various scientific fields. It serves as a highly valuable pre-processing step for data analysis. While traditional decomposition techniques often rely on mathematical models, recent research suggests that applying the latest deep learning models to this problem presents an exciting, unexplored area with promising potential. This work presents a novel method for the additive decomposition of one-dimensional signals. We leverage the Transformer architecture to decompose signals into their constituent components: piece-wise constant, smooth (low-frequency oscillatory), textured (high-frequency oscillatory), and a noise component. Our model, trained on synthetic data, achieves excellent accuracy in modeling and decomposing input signals from the same distribution, as demonstrated by the experimental results.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.