Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Agentomics-ML: Autonomous Machine Learning Experimentation Agent for Genomic and Transcriptomic Data (2506.05542v1)

Published 5 Jun 2025 in cs.LG and cs.MA

Abstract: The adoption of ML and deep learning methods has revolutionized molecular medicine by driving breakthroughs in genomics, transcriptomics, drug discovery, and biological systems modeling. The increasing quantity, multimodality, and heterogeneity of biological datasets demand automated methods that can produce generalizable predictive models. Recent developments in LLM-based agents have shown promise for automating end-to-end ML experimentation on structured benchmarks. However, when applied to heterogeneous computational biology datasets, these methods struggle with generalization and success rates. Here, we introduce Agentomics-ML, a fully autonomous agent-based system designed to produce a classification model and the necessary files for reproducible training and inference. Our method follows predefined steps of an ML experimentation process, repeatedly interacting with the file system through Bash to complete individual steps. Once an ML model is produced, training and validation metrics provide scalar feedback to a reflection step to identify issues such as overfitting. This step then creates verbal feedback for future iterations, suggesting adjustments to steps such as data representation, model architecture, and hyperparameter choices. We have evaluated Agentomics-ML on several established genomic and transcriptomic benchmark datasets and show that it outperforms existing state-of-the-art agent-based methods in both generalization and success rates. While state-of-the-art models built by domain experts still lead in absolute performance on the majority of the computational biology datasets used in this work, Agentomics-ML narrows the gap for fully autonomous systems and achieves state-of-the-art performance on one of the used benchmark datasets. The code is available at https://github.com/BioGeMT/Agentomics-ML.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets