Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Contextual Memory Intelligence -- A Foundational Paradigm for Human-AI Collaboration and Reflective Generative AI Systems (2506.05370v1)

Published 28 May 2025 in cs.AI and cs.ET

Abstract: A critical challenge remains unresolved as generative AI systems are quickly implemented in various organizational settings. Despite significant advances in memory components such as RAG, vector stores, and LLM agents, these systems still have substantial memory limitations. Gen AI workflows rarely store or reflect on the full context in which decisions are made. This leads to repeated errors and a general lack of clarity. This paper introduces Contextual Memory Intelligence (CMI) as a new foundational paradigm for building intelligent systems. It repositions memory as an adaptive infrastructure necessary for longitudinal coherence, explainability, and responsible decision-making rather than passive data. Drawing on cognitive science, organizational theory, human-computer interaction, and AI governance, CMI formalizes the structured capture, inference, and regeneration of context as a fundamental system capability. The Insight Layer is presented in this paper to operationalize this vision. This modular architecture uses human-in-the-loop reflection, drift detection, and rationale preservation to incorporate contextual memory into systems. The paper argues that CMI allows systems to reason with data, history, judgment, and changing context, thereby addressing a foundational blind spot in current AI architectures and governance efforts. A framework for creating intelligent systems that are effective, reflective, auditable, and socially responsible is presented through CMI. This enhances human-AI collaboration, generative AI design, and the resilience of the institutions.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets