Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SafeSteer: Interpretable Safety Steering with Refusal-Evasion in LLMs (2506.04250v1)

Published 1 Jun 2025 in cs.LG

Abstract: Fine-tuning LLMs to adapt to evolving safety policies is costly and impractical. Mechanistic interpretability enables inference-time control through latent activation steering, yet its potential for precise, customizable safety adjustments remains largely untapped. This paper investigates an approach called SafeSteer for guiding the outputs of LLMs by: (i) leveraging category-specific steering vectors for more precise control, (ii) employing a simple, gradient-free unsupervised method to enhance safety steering while preserving text quality, topic relevance, and without explicit refusal, and (iii) accomplishing this without a hard requirement of contrastive pairwise safe data. We also highlight that our method, being simple and effective, aligns with recent studies suggesting that simple techniques often outperform more complex ones in activation steering. We showcase the effectiveness of our approach across various LLMs, datasets, and risk categories, demonstrating its ability to provide precise control, prevent blanket refusals, and guide models toward generating safe content while maintaining topic relevance.

Summary

We haven't generated a summary for this paper yet.