Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

A MUSCL-Hancock scheme for non-local conservation laws (2506.04176v1)

Published 4 Jun 2025 in math.NA and cs.NA

Abstract: In this article, we propose a MUSCL-Hancock-type second-order scheme for the discretization of a general class of non-local conservation laws and present its convergence analysis. The main difficulty in designing a MUSCL-Hancock-type scheme for non-local equations lies in the discretization of the convolution term, which we carefully formulate to ensure second-order accuracy and facilitate rigorous convergence analysis. We derive several essential estimates including $\mathrm{L}\infty,$ bounded variation ($\mathrm{BV}$) and $\mathrm{L}1$- Lipschitz continuity in time, which together with the Kolmogorov's compactness theorem yield the convergence of the approximate solutions to a weak solution. Further, by incorporating a mesh-dependent modification in the slope limiter, we establish convergence to the entropy solution. Numerical experiments are provided to validate the theoretical results and to demonstrate the improved accuracy of the proposed scheme over its first-order counterpart.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.