Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
Gemini 2.5 Pro Premium
51 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
34 tokens/sec
GPT-4o
83 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
471 tokens/sec
Kimi K2 via Groq Premium
203 tokens/sec
2000 character limit reached

Efficient Data Selection for Domain Adaptation of ASR Using Pseudo-Labels and Multi-Stage Filtering (2506.03681v1)

Published 4 Jun 2025 in cs.CL, cs.SD, and eess.AS

Abstract: Fine-tuning pretrained ASR models for specific domains is challenging for small organizations with limited labeled data and computational resources. Here, we explore different data selection pipelines and propose a robust approach that improves ASR adaptation by filtering pseudo-labels generated using Whisper (encoder-decoder) and Zipformer (transducer) models. Our approach integrates multiple selection strategies -- including word error rate (WER) prediction, named entity recognition (NER), and character error rate (CER) analysis -- to extract high-quality training segments. We evaluate our method on Whisper and Zipformer using a 7500-hour baseline, comparing it to a CER-based approach relying on hypotheses from three ASR systems. Fine-tuning on 7500 hours of pseudo-labeled call center data achieves 12.3% WER, while our filtering reduces the dataset to 100 hours (1.4%) with similar performance; a similar trend is observed on Fisher English.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.