Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A rank zero $p$-converse to a theorem of Gross--Zagier, Kolyvagin and Rubin (2506.03465v1)

Published 4 Jun 2025 in math.NT

Abstract: Let $E$ be a CM elliptic curve defined over $\mathbb{Q}$ and $p$ a prime. We show that $${\mathrm corank}{\mathbb{Z}{p}} {\mathrm Sel}{p{\infty}}(E{/\mathbb{Q}})=0 \implies {\mathrm ord}{s=1}L(s,E{/\mathbb{Q}})=0 $$ for the $p{\infty}$-Selmer group ${\mathrm Sel}{p{\infty}}(E{/\mathbb{Q}})$ and the complex $L$-function $L(s,E_{/\mathbb{Q}})$. Along with Smith's work on the distribution of $2\infty$-Selmer groups, this leads to the first instance of the even parity Goldfeld conjecture: For $50\%$ of the positive square-free integers $n$, we have $ {\mathrm ord}{s=1}L(s,E{(n)}{/\mathbb{Q}})=0, $ where $E{(n)}: ny{2}=x{3}-x $ is a quadratic twist of the congruent number elliptic curve $E: y{2}=x{3}-x$.

Summary

We haven't generated a summary for this paper yet.