2000 character limit reached
A rank zero $p$-converse to a theorem of Gross--Zagier, Kolyvagin and Rubin (2506.03465v1)
Published 4 Jun 2025 in math.NT
Abstract: Let $E$ be a CM elliptic curve defined over $\mathbb{Q}$ and $p$ a prime. We show that $${\mathrm corank}{\mathbb{Z}{p}} {\mathrm Sel}{p{\infty}}(E{/\mathbb{Q}})=0 \implies {\mathrm ord}{s=1}L(s,E{/\mathbb{Q}})=0 $$ for the $p{\infty}$-Selmer group ${\mathrm Sel}{p{\infty}}(E{/\mathbb{Q}})$ and the complex $L$-function $L(s,E_{/\mathbb{Q}})$. Along with Smith's work on the distribution of $2\infty$-Selmer groups, this leads to the first instance of the even parity Goldfeld conjecture: For $50\%$ of the positive square-free integers $n$, we have $ {\mathrm ord}{s=1}L(s,E{(n)}{/\mathbb{Q}})=0, $ where $E{(n)}: ny{2}=x{3}-x $ is a quadratic twist of the congruent number elliptic curve $E: y{2}=x{3}-x$.