Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Sampling Preferences Yields Simple Trustworthiness Scores (2506.03399v1)

Published 3 Jun 2025 in cs.HC and cs.AI

Abstract: With the onset of LLMs, the performance of AI models is becoming increasingly multi-dimensional. Accordingly, there have been several large, multi-dimensional evaluation frameworks put forward to evaluate LLMs. Though these frameworks are much more realistic than previous attempts which only used a single score like accuracy, multi-dimensional evaluations can complicate decision-making since there is no obvious way to select an optimal model. This work introduces preference sampling, a method to extract a scalar trustworthiness score from multi-dimensional evaluation results by considering the many characteristics of model performance which users value. We show that preference sampling improves upon alternate aggregation methods by using multi-dimensional trustworthiness evaluations of LLMs from TrustLLM and DecodingTrust. We find that preference sampling is consistently reductive, fully reducing the set of candidate models 100% of the time whereas Pareto optimality never reduces the set by more than 50%. Likewise, preference sampling is consistently sensitive to user priors-allowing users to specify the relative weighting and confidence of their preferences-whereas averaging scores is intransigent to the users' prior knowledge.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)