Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 TPS
Gemini 2.5 Pro 50 TPS Pro
GPT-5 Medium 32 TPS
GPT-5 High 30 TPS Pro
GPT-4o 67 TPS
GPT OSS 120B 452 TPS Pro
Kimi K2 190 TPS Pro
2000 character limit reached

Investigating Quantum Feature Maps in Quantum Support Vector Machines for Lung Cancer Classification (2506.03272v1)

Published 3 Jun 2025 in quant-ph and cs.LG

Abstract: In recent years, quantum machine learning has emerged as a promising intersection between quantum physics and artificial intelligence, particularly in domains requiring advanced pattern recognition such as healthcare. This study investigates the effectiveness of Quantum Support Vector Machines (QSVM), which leverage quantum mechanical phenomena like superposition and entanglement to construct high-dimensional Hilbert spaces for data classification. Focusing on lung cancer diagnosis, a concrete and critical healthcare application, we analyze how different quantum feature maps influence classification performance. Using a real-world dataset of 309 patient records with significant class imbalance (39 non-cancer vs. 270 cancer cases), we constructed six balanced subsets for robust evaluation. QSVM models were implemented using Qiskit and executed on the qasm simulator, employing three distinct quantum feature maps: ZFeatureMap, ZZFeatureMap, and PauliFeatureMap. Performance was assessed using accuracy, precision, recall, specificity, and F1-score. Results show that the PauliFeatureMap consistently outperformed the others, achieving perfect classification in three subsets and strong performance overall. These findings demonstrate how quantum computational principles can be harnessed to enhance diagnostic capabilities, reinforcing the importance of physics-based modeling in emerging AI applications within healthcare.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com